Температура теплоносителя на входе

Содержание

Требования Норм к Температуре Теплоносителя для систем отопления и его давлению

Температура теплоносителя на входе

Данные нормы являются наиболее «древними». Они рассчитывались в то время, когда на топливе для подогрева теплоносителя не экономили, батареи были горячими. Зато дома строились преимущественно из «холодных» по качествам теплосбережения материалов, то есть из бетонных панелей.
Времена изменились, но нормы остались теми же.

Согласно действующему ГОСТ Р 52617-2000, температура воздуха в жилых помещениях не должна быть ниже 18°С (для угловых комнат – не менее 20°С). При этом организация – поставщик тепловой энергии имеет право в ночное время (0-5 часов) снижать температуру воздуха не более, чем на 3°С.

Отдельно устанавливаются нормы отопления для различных помещений квартиры: например, в ванной комнате должно быть не менее 25°С, а в коридоре – не менее 16°С.

Общество длительно и временами небезуспешно ведет борьбу за изменение порядка определения норм отопления, привязывая их не к температуре воздуха в помещениях, а к средней температуре теплоносителя.

Данный показатель является значительно более объективным для потребителей, хотя и невыгодным для поставщика тепловой энергии.

Судите сами: температура в жилых помещениях часто зависит не только от работающей системы, сколько от характера жизнедеятельности человека и условий его проживания.

Например, теплопроводность кирпича значительно ниже, чем бетона, поэтому в кирпичном доме при одной и той же температуре придется затратить меньшее количество тепловой энергии. В таких помещениях, как кухня, в процессе готовки пищи выделяется тепла не намного меньше, чем от батарей отопления.

Многое зависит также от конструктивных особенностей самих отопительных приборов. Скажем, системы панельного отопления будут при той же температуре воздуха иметь более высокую теплоотдачу, чем чугунные батареи.

Таким образом, нормы отопления, привязанные к температуре воздуха, являются не совсем справедливыми. При данном способе учитывается температура наружного воздуха ниже 8°С.

При фиксации такого значения в течение трех дней подряд теплогенерирующая организация должна безусловно подать тепло потребителям.

Для средней полосы расчетные значения температуры теплоносителя в зависимости от температуры внешнего воздуха имеют следующие значения (для удобства пользования данными значениями, используя бытовые термометры, температурные показатели округлены):

Температура наружного воздуха, °С

Температура сетевой воды в подающем трубопроводе, °С

Пользуясь приведенной таблицей, можно легко определить температуру воды в системе панельного отопления (или в любой другой), использовав обычный градусник в момент спуска части теплоносителя из системы.

Для прямой ветки пользуются данными граф 5 и 6, а для обратки – данными графы 7.

Отметим, что первые три графы устанавливают отпускную температуру воды, то есть без учета потерь в передающих магистральных трубопроводах.

Если фактическая температура теплоносителя не соответствует нормативной, это является основанием для пропорционального уменьшения платы за предоставляемые услуги центрального теплоснабжения.

Есть еще вариант с установкой тепловых счетчиков, но он срабатывает лишь тогда, когда все квартиры в доме обслуживаются системой централизованного отопления. Кроме того, такие счетчики подлежат ежегодной обязательной проверке.

Как составляется и используется?

На основании графика определяется необходимое количество радиаторов, их размер, диаметры стояков, планируется работа теплопунктов и организовывается работа ТЭЦ, в том числе и мероприятия по подготовке к отопительному периоду (какой график отопительного периода в 2020 году?).

Основа для расчета графика – соотношение температуры подаваемой с ТЭЦ воды и уходящей на нее обратно после возвращения из домовой системы. Еще несколько десятилетий назад существовало стандартное соотношение 95-70 при подаче тепла для многоквартирных домов высотой до 10 этажей с нижней разводкой, и 105-70 для более высоких зданий, где использовалась верхняя разводка отопительных стояков.

Это означало, что температура теплоносителя, подаваемого на тепловой пункт в самый морозный день в году, должна составлять 95 или 105°С (в зависимости от требований), а обратки – 70°С.

На сегодняшний день многие застройщики разрабатывают собственные температурные графики, учитывающие использование качественных современных теплоизоляционных материалов. Более высокая стоимость материалов ведет к удорожанию жилья и, в то же время, снижению расходов на коммунальные услуги. При этом можно встретить графики, регламентирующие соотношение 80-60.

Приложение 11 к СП 60.13330.2012 на данный момент (июль 2019 года) регламентирует только максимальные показатели рабочей температуры теплоносителя в отопительной системе.

Для жилых и административных помещений в случае использования водяного отопления вне зависимости от типа нагревательных приборов для двухтрубных систем – 95°С, для однотрубных – 105°С.

Однако при скрытой прокладке труб и использовании конвекторов с кожухом температурный показатель воды может быть увеличен до 130°С.

Понятно, что вода не может нагреваться бесконечно. При 100°С она закипает и дальнейший рост показателя достигается увеличением давления в системе, которое достигает 7-8 атмосфер.

Температура отработанного теплоносителя, поступающего обратно на ТЭЦ, не должна быть очень высокой, потому что это может привести к выведению системы из строя.

Если же она становится меньше нормы, это говорит о теплопотерях в локальной системе, превышающих допустимые.

Определяется на основании технико-экономических показателей таким образом, чтобы подогрев ее для дальнейшего запуска в систему отопления был рациональным (более подробно о коммерческом учете тепловой энергии, теплоносителя можно узнать тут).

График помогает эффективно и равномерно распределить не только тепло по всем помещениям многоквартирного дома, но и горячую воду по квартирам.

Если установленные температурным графиком показатели нарушаются из-за низкой температуры воды в батарее, то потребитель вправе потребовать перерасчета оплаты коммунальных ]какова плата за отопление[/anchor] и порядок ее начисления?). При этом величина корректировки будет определена на основании пункта 14 Приложения №1 к Постановлению Правительства РФ № 354 от 06.05.2011 г.

Мы решаем юридические проблемы любой сложности. #Будьтедома и оставляйте свой вопрос нашему юристу в чате. Так безопаснее.

Источник: https://tbti.ru/kvartira/grafik-temperatur.html

Эффективные температуры теплоносителя в различных системах отопления!

Температура теплоносителя на входе

Чтобы с комфортом пережить холодное время года, надо заранее обеспокоиться созданием качественной отопительной системы.

Если вы живете в частном доме – у вас автономная сеть, а если в многоквартирном жилом комплексе – централизованная.

Какая бы ни была, всё равно нужно, чтобы температура у батарей в сезон отопления была в пределах нормативов, установленных СНиП-ом. Разберем в этой статье температуру теплоносителя для разных систем отопления.

Сезон отопления начинается тогда, когда на улице средняя температура за сутки опускается ниже +8°C и прекращается, соответственно, когда поднимается выше этой отметки, но при этом еще и держится так до 5 дней.

Нормативы. Какая температура должна быть в комнатах (минимум):

  • В жилом помещении +18°C;
  • В угловой комнате +20°C;
  • На кухне +18°C;
  • В ванной +25°C;
  • В коридорах и на лестничных пролетах +16°C;
  • В лифте +5°C;
  • В подвале +4°C;
  • На чердаке +4°C. 

Надо учесть, что данные температурные нормативы относятся к периоду отопительного сезона и на остальное время не распространяются. Также, полезной будет информация, что горячая вода должна быть от +50°C до +70°C, согласно СНиП-у 2.08.01.89 «Жилые здания».

Различают несколько видов отопительных систем:

С естественной циркуляцией

Теплоноситель циркулирует без перерывов. Это связано с тем, что изменение температуры и плотности теплоносителя происходит непрерывно. Из-за этого тепло распределяется равномерно по всем элементам отопительной системы с естественной циркуляцией.

Циркулярный напор воды напрямую зависит от разности температур горячей и остывшей воды. Обычно в первой системе отопления температура теплоносителя равна 95°C, а во второй 70°C.

С принудительной циркуляцией

Такая система делится на два типа:

1. Однотрубная
2. Двухтрубная

Разница между ними достаточно большая. Отличается схема разводки труб, их количество, наборы запорной, регулирующей и контролирующей арматур.

Согласно СНиП 41-01-2003 (“Отопление, вентиляция и кондиционирование”), максимальная температура теплоносителя в данных системах отопления составляет:

  • двухтрубная отопительная система – до 95°С;
  • однотрубная – до 115°С;

Оптимальная температура – от 85°С до 90°С (из-за того, что при 100°С, вода уже закипает. Когда достигается эта величина, приходится задействовать специальный меры для прекращения закипания).

Размеры тепла, отдаваемые радиатором зависят от места установки и способа подключения труб. Тепловая отдача может снизиться на 32% из-за неудачного расположения труб.

Наилучшим вариантом является диагональное подключение, когда горячая вода идет сверху, а обратка -снизу противоположной стороны. Таким образом проверяют радиаторы на испытаниях.

Самое неудачное – когда горячая вода идет снизу, а холодная сверху по той же стороне.

Расчет оптимальной температуры отопительного прибора

Самое важное – наиболее комфортная температура для человеческого существования +37°C.

При выборе радиатора вам нужно рассчитать, хватит ли тепловой мощности прибора для обогрева помещения. Для этого есть специальная формула:

S * h*41:42,

  • где S – площадь помещения;
  • h – высота комнаты;
  • 41 – минимальная мощность на 1 куб м S;
  • 42 – номинальная теплопроводность одной секции по паспорту.

Учтите, что радиатор, поставленный под окно в глубокую нишу даст почти на 10% меньше тепла. Декоративный короб заберет 15-20%.

Когда вы используете радиатор для поддержания необходимой температуры воздуха в помещении, у вас два варианта: можно задействовать маленькие радиаторы и повысить температуру воды в них (высокотемпературное отопление) или же установить большой радиатор, но при этом будет не такая высокая температура поверхности (низкотемпературное отопление).

При высокотемпературном отоплении радиаторы очень горячие и можно получить ожог, если дотронуться до него.  Кроме того, при высокой температуре радиатора может начаться разложение пыли, осевшей на нем, которая потом будет вдыхаться людьми.

При использовании низкотемпературного отопления приборы чуть теплые, но в помещении все равно тепло. Вдобавок, этот способ более экономичен и безопасен.

Чугунные радиаторы

Средняя отдача тепла у отдельной секции радиатора из данного материала составляет от 130 до 170 Вт, из-за толстых стенок и большой массы прибора. Потому требуется много времени на прогревание помещения. Хотя в этом есть и обратный плюс – большая инерция обеспечивает долгое сохранение тепла в радиаторе после выключения котла.

Температура теплоносителя в нем составляет 85-90 °C

Алюминиевые радиаторы

Данный материал легкий, легко нагревающийся и с хорошей теплоотдачей от 170 до 210 ват/секцию. Однако подвергается негативному воздействию других металлов и может быть установлен не в каждой системе.

Рабочая температура теплоносителя в системе отопления с данным радиатором составляет 70°C

Стальные радиаторы

Материал обладает ещё меньшей теплопроводностью. Но за счет увеличения площади поверхности перегородками и ребрами, греет все равно хорошо. Отдача тепла от 270 Вт – 6,7 кВт. Однако это мощность всего радиатора, а не отдельного его сегмента. Конечная температура зависит от габаритов обогревателя и количества ребер и пластинок в его конструкции.

Рабочая температура теплоносителя в системе отопления с данным радиатором так же составляет 70°C

Итак, какой же лучше?

 Вероятно, выгоднее получится установка оборудования с комбинацией свойств алюминиевой и стальной батареи – биметаллический радиатор. Он обойдется вам дороже, но и срок работы будет дольше.

Преимущество таких приборов очевидно: если алюминий выдерживает температуру теплоносителя в системе отопления только до 110°С, то биметалл до 130°С.

Отдача тепла наоборот, хуже, чем у алюминиевых, но лучше, чем у других радиаторов: от 150 до 190 Вт.

Тёплый пол

Ещё один способ создать комфортную температурную среду в комнате. В чем же его преимущества и недостатки перед обычными радиаторами?

Из школьного курса физики мы знаем о явлении конвекции. Холодный воздух стремится вниз, а когда нагревается – поднимается вверх. Поэтому, кстати, мерзнут ноги. Теплый пол же все меняет – нагретый внизу воздух вынужден подниматься вверх.

Такое покрытие имеет большую отдачу тепла (зависит от площади нагревающего элемента).

Температура пола также прописана в СНиП-е (“Строительные нормы и правила”).

В доме для постоянного проживания она не должна быть больше +26°С.

В комнатах для временного пребывания людей до +31°С.

Учреждения, где идут занятия с детьми температура не должна превышать +24°С.

Рабочая температура теплоносителя в системе отопления теплого пола составляет 45-50 °С. Температура поверхности в среднем 26-28°С
Если материал был полезен, не забудьте нажать на палец вверх и обязательно подписывайтесь на наши обновления!

Смотрите так же наши другие материалы:

1.Горькая правда о диаметре трубы для теплого пола
2.Что лучше: теплые полы или радиаторы?
3.7 роковых ошибок отопления, которые допускают многие
4.На подачу или обратку? Куда ставить насос?
5.Приборы, которые круче радиаторов
7.Разбираемся в устройстве современного газового котла

Источник: https://zen.yandex.ru/media/eurosantehnik/effektivnye-temperatury-teplonositelia-v-razlichnyh-sistemah-otopleniia-5af16b9d57906aab58951c62

Низкотемпературные системы отопления

Температура теплоносителя на входе

Несмотря на суровый климат, низкотемпературные системы отопления все чаще применяются и в России. Их преимущества постепенно завоевывают признание и в нашей стране.

особенность низкотемпературных систем отражает температуру теплоносителя. Он может нагреваться в такой системе до температуры не более 70°С (обычно 50-55°С), а разность температур теплоносителя в прямой и обратной линиях зачастую не превышает 14°С. В отличие от высокотемпературных систем, где температура теплоносителя может достигать 95°С.

К преимуществам низкотемпературных систем относят:

– равномерную и комфортную температуру воздуха в помещении, что обеспечивает пользователю более высокий уровень температурного комфорта;

– большую гибкость и экологичность, за счет возможности создания многовалентных (от нескольких источников энергии, в том числе возобновляемых) систем теплоснабжения.

Источники тепла и особенности комплектации

При использовании альтернативных источников энергии периодического действия (солнечная энергия, сбросная теплота технологического процесса) в системе низкотемпературного водяного отопления используются теплоаккумуляторы.

В бытовых системах отопления эту функцию обычно выполняют баки-аккумуляторы, которые устанавливаются практически во всех поливалентных системах (рис. 1).

Такой теплоаккумулятор представляет собой хорошо изолированную, например, слоем полиуретана толщиной 80-100 мм емкость, в которую встроено несколько теплообменников, в том числе от солнечного коллектора и/или теплового насоса.

Рис. 1. Бивалентная система отопления (схема) с баком-аккумулятором

Современные решения для относительно больших зданий предполагают использование в качестве одного из источников тепла сеть централизованного теплоснабжения. При этом появляется возможность дополнить такую систему тепловыми и солнечными насосами.

Пиковым теплогенератором поливалентных низкотемпературных систем и единственным моновалентным часто является конденсационный котел (рис.

2), в котором дополнительным источником энергии служит утилизируемая энергия фазового перехода пара, содержащегося в продуктах реакции горения, в воду.

При этом можно получить еще 6 и 11 % тепловой энергии, соответственно, при использовании жидкого и газообразного топлива.

Рис. 2. Принцип работы конденсационного котла (схема)

Конденсационный режим работы котла в значительной степени зависит от температурных параметров системы отопления.

Чем ниже температура теплоносителя в обратном котловом контуре, тем более полно происходит конденсация пара, больше тепла будет утилизировано, выше КПД. Для газовых котлов пороговая температура конденсационного режима 57°С.

Поэтому и система отопления должна быть рассчитана на использование теплоносителя с более низкой температурой в обратном контуре.

При средних для зимнего периода температурах она по проектному расчету с учетом максимальной эффективности конденсационного режима не должна превышать 45°С. Такие параметры обеспечиваются низкотемпературными системами отопления, в которых конденсационные котлы работают преимущественно в «штатном» для них режиме.

Из-за малого перепада температуры теплоносителя на входе и выходе низкотемпературные системы отопления обычно выполняются двухтрубными с расширительным баком, который хорошо изолирован и снабжен циркуляционной линией.

Для удаления воздуха из систем с нижней разводкой предусматривают воздушную линию и воздушные краны непосредственно у отопительных приборов.

Отопительные приборы низкотемпературных систем

В общем случае, низкотемпературные системы отопления имеют и более низкие, по сравнению с высокотемпературными, удельные тепловые потоки от поверхности отопительного прибора.

  Необходимый объем передачи энергии может обеспечиваться в таком случае за счет увеличения поверхности теплосъема, которая в значительной степени определяется габаритными размерами (длиной и высотой) отопительного прибора или количеством секций, либо теплосъем должен интенсифицироваться с теплообменных поверхностей.

Соответственно приборы водяного отопления, рассчитанные на применение в низкотемпературных системах, должны иметь более развитые и сложные поверхности теплообмена.

Этому соответствует применение конвекторов с большой площадью оребрения при качественном контакте с коллектором. Увеличить эффективность теплосъема в таких приборах позволяет режим принудительной конвекции.

Это же реализуется и в ряде приборов, позиционируемых как радиаторы.

Значение имеет и материал, из которого изготовлены приборы. Так, эффективные в высокотемпературных системах отопления чугунные радиаторы характеризуются большой тепловой инерцией.  Система отопления, созданная на их основе, хуже поддается регулировке средствами современной автоматики. Даже ставшие уже привычными терморегуляторы не столь эффективны.

В отличие от чугунных, стальные панельные радиаторы (рис.

3), большинство из которых по принципу теплоотдачи правильнее называть конвекторами, имеют малую инерционность, то есть быстро нагреваются и остывают, что позволяет автоматически регулировать их работу, экономя энергию, и сравнительно простую конструкцию.

Большая площадь панелей обеспечивает высокий уровень теплоизлучения, а наличие оребрения в межпанельном пространстве увеличивает конвективную часть теплоотдачи, повышая комфортность отопления.

Рис. 3. Стальной панельный радиатор

Широкий модельный ряд стальных панельных радиаторов и большое число компаний-производителей и дистрибьюторов позволяют без труда подобрать оптимальный прибор для любого помещения.

Многорядные (с несколькими панелями) стальные радиаторы хорошо подходят для эксплуатации в низкотемпературных системах отопления, практически идеально соответствуя возможностям устанавливаемой на них терморегулирующей арматуре.

Стальные трубчатые радиаторы имеют привлекательный дизайн и характеризуются низким гидравлическим сопротивлением и гигиеничностью. В низкотемпературном комфортном отоплении они заняли собственную нишу дизайн-приборов.  Однако они характеризуются более высокой тепловой инерцией по сравнению со стальными панельными радиаторами.

При переходе на более низкие температурные параметры теплоносителя возрастает доля конвективного переноса тепла. Наиболее полно такой механизм реализуется в конвекторах, отличающихся от радиаторов конструкцией, обеспечивающей преимущественную реализацию такого механизма теплопереноса. При этом режим принудительной конвекции позволяет его увеличить в разы.

Отдельного упоминания заслуживают встраиваемый в пол конвекторы (рис. 4), которые почти невидимые, на поверхности пола только декоративная решетка, позволяют эффективно отапливать большие помещения, в том числе с большими площадями остекления фасадов.

Эти приборы характеризуются большой поверхностью теплообмена, теплосъем с которой может усиливаться с помощью принудительной вентиляции.

Установленные в пол по периметру помещения, оснащенные терморегулирующей автоматикой, они могут очень гибко регулировать уровень теплового комфорта.

Рис. 4. Встраиваемый в пол конвектор

Главным требованиям, предъявляемым к приборам для организации низкотемпературного отопления, отвечают конвекторы, реализующие концепцию Low H2O, разработанную компанией Jaga.  Очень низкий объем воды в радиаторе обеспечивает быстрое реагирование на управляющее воздействие.

Объем теплоносителя в таком приборе мощностью 2 кВт, по другим характеристикам аналогичном традиционному, не превышает 1 дц3 при общей его массе 3 кг.

Это создает возможность очень быстро реагировать температурой развитых теплообменных поверхностей на изменения температуры теплоносителя, которые в свою очередь соответствуют малейшим изменениям температуры в атмосфере отапливаемого помещения.

В итоге пользователь получает преимущество управления тепловым комфортом в автоматическом режиме. Такие приборы рассчитаны на работу в системах с конденсационными котлами, тепловыми насосами, солнечными коллекторами и другими источниками с низкими температурными режимами, позволяя снизить потребление энергии без ущерба для комфортности.

Плюс «теплые полы»

«Теплый пол» и панельное отопление также можно рассматривать в ряду технических средств, успешно применяемых составе низкотемпературных отопительных систем.

  Теплый пол позволяет получить вертикальное распределение температур в помещении, близкое к идеальному, наиболее соответствующему физиологическим требованиям человека: более высокая температура внизу помещения, а не в зоне головы, при небольшом перепаде температур.

На высоте головы температура в помещениях с теплым полом составляет около 18°C, что близко к оптимуму теплового комфорта (рис. 5).

Рис. 5. Градиент температур по вертикали в помещении при напольном отоплении: коричневым цветом показана идеальная кривая, красным – действительная для теплого пола

Оптимальная результирующая температура, отражающая состояние теплового комфорта человека, регламентируется ГОСТ 30494-2011 для жилых и административных зданий на уровне значений 20-22˚С.

Благодаря более комфортному градиенту температур в помещении напольное отопление обеспечивает тепловой комфорт при температуре на 1-2°С ниже регламентируемого, чего не позволяет добиться конвективное радиаторное.

Следствием этого является более экономный расход энергии.

Преимущества в достижении комфорта с помощью теплых полов объясняются особенностями теплоотдачи при данном способе отопления.

Теплый пол, также как и любой отопительный прибор, отдает тепло преимущественно излучением и конвекцией.

Доля радиационной составляющей в теплоотдаче теплого пола несколько ниже конвекционной из-за невысокой температуры поверхности, которая регламентируется СНиПом 41-01-2003 «Отопление, вентиляция и кондиционирование» для жилых помещений с постоянным пребыванием людей не выше 26°С и не выше 31°С в помещениях с временным пребыванием.

В соответствии с этим ограничением температура теплоносителя в системе водяного теплого пола регламентируется не выше 45ºC (с перепадом на входе и выходе 10-12ºC), что соответствует значению данного параметра в низкотемпературных системах отопления.

Удельный теплосъем с поверхности любых напольных систем составляет порядка 100 Вт/м2. Преимущества же комфортности этого способа обогрева объясняются прежде всего равномерной теплоотдачей со всей площади поверхности пола. Именно поэтому тепло распределяется также равномерно по всему объему помещения, и даже относительно небольшой вклад радиационной составляющей становится заметным.

Способствует равномерному распределению тепла без локальных зон перегрева и то, что при теплоотдаче с поверхности теплого пола не образуется стойких конвекционных потоков, которые, к тому же, разносят пыль в атмосфере помещения. Как следствие, теплый пол оказывается более выигрышным способом обогрева и с гигиенической точки зрения.

В помещениях с высокими потолками (производственные корпуса, культовые сооружения, спортзалы) экономия становится еще больше, достигая 30%, так как нагрев воздуха до комфортной температуры (18-20°С) необходим только на высоте 2-2,5 м от пола.

Низкотемпературный вакуум

Особое место среди отопительных приборов занимают низкотемпературные вакуумные радиаторы отопления, использующие схему тепловой трубки (рис. 6 а, б).

Это герметичные емкости с небольшим количеством хладагента внутри, в которых создается разряжение, обеспечивающее переход жидкости в пар при 30-35°С (при понижении давления соответственно понижается и температура фазового перехода). В основании прибора проходит труба с циркулирующим теплоносителем.

При контакте с ее поверхностью, нагретой выше 35°С хладагент в разряженном воздухе превращается в пар, поднимается вверх, конденсируется на стенках прибора, нагревая их, и стекает вниз, где вновь превращается в пар. Затем цикл повторяется.

Рис. 6. Вакуумный радиатор отопления: а – установленный в системе отопления, б – принцип работы (схема)

При этом разность температур нагретой трубы с теплоносителем и поверхностью прибора составляет 15-20°С. У таких низкотемпературных отопительных радиаторов температура поверхности прибора не превышает 65°С, при температуре теплоносителя 85°С и температуре воздуха в помещении 20-22°С.    

Важное преимущество таких приборов – сокращение объема теплоносителя в системе отопления в десятки раз. Поэтому при запуске системы отопления происходит сокращение сопоставимое сокращение энергозатрат.

Например, для разогрева теплоносителя при работе котла мощностью 20 кВт при регистрах Æ0,16 м и длиной 50 м требуется время около четырех часов, а при аналогичных вакуумных регистрах – три минуты.

При прочих равных параметрах такой эффект достигается за счет практически стократного снижения массы теплоносителя в отопительной системе.

Статья из журнала “Аква-Терм” № 6/2019, рубрика “Отопление и ГВС”

: 15 января 2020 г.

вернуться назад

Источник: https://aqua-therm.ru/articles/articles_641.html

Как расчитать температуру теплоносителя на вводе и выоходе

Температура теплоносителя на входе

Расчётная температура теплоносителя в подающем трубопроводе

Расчётная температура теплоносителя в обратном трубопроводе

Расчётная температура воздуха в помещении

Расчётная температура наружного воздуха

Выберите населённый пункт

Температурный график — зависимость температуры теплоносителя (воды) в системе отопления от температуры наружного воздуха.

Температура теплоносителя на входе в систему отопления при качественном регулировании отпуска тепла зависит от температуры наружного воздуха, то есть чем ниже температура наружного воздуха, тем с большей температурой должен прийти теплоноситель в систему отопления. Температурный график выбирается при проектировании системы отопления здания, от него зависит размер отопительных приборов, расход теплоносителя в системе, а следовательно и диаметр разводящих трубопроводов.

Для обозначения температурного графика используют две цифры, например, 90-70°C — это означает, что при расчётной температуре наружного воздуха (для Киева -22°C), для создания комфортной температуры воздуха внутри помещения (для жилья 20°C), в систему отопления должен поступить теплоноситель (вода) с температурой 90°C, а выйти из неё с температурой 70°C.

Температурные графики используются при наладке и анализе режима работы систем отопления. Так, например, завышенная температура обратной воды при нормальной подаче свидетельствует о высоком расходе через данную ветвь системы отопления, а заниженная — о дефиците расхода.

Системы отопления зданий до 10ти этажей построенных в прошлом веке были рассчитаны под отопительный график 95-70°C, а в зданиях с большей этажностью принимали график 105-70°C. При расчёте систем отопления современных новостроек температурный график принимается по усмотрению проектировщика и чаще всего составляет 90-70°C или 80-60°C, хотя может быть принят и любой другой.

Температурный график 150/70

Температурный график 90/70

Температурный график 80/60

Расчетный расход сетевой воды на систему отопления (т/ч), присоединенную по зависимой схеме, можно определить по формуле:

Рисунок 367. Расчетный расход сетевой воды на СО

где Qо.р.- расчетная нагрузка на систему отопления, Гкал/ч;

τ1.р.- температура воды в подающем трубопроводе тепловой сети при расчетной температуре наружного воздуха для проектирования отопления, ° С;

τ2.р.- температура воды в обратном трубопроводе системы отопления при расчетной температуре наружного воздуха для проектирования отопления, °С;

Расчетный расход воды в системе отопления определяется из выражения:

Рисунок 368. Расчетный расход воды в системе отопления

τ3.р.- температура воды в подающем трубопроводе системы отопления при расчетной температуре наружного воздуха для проектирования отопления, ° С;

Относительный расход сетевой воды Gотн. на систему отопления:

Рисунок 369. Относительный расход сетевой воды на СО

где Gc.- текущее значение сетевого расхода на систему отопления, т/ч.

Относительный расход тепла Qотн. на систему отопления:

где Qо.- текущее значение расхода теплоты на систему отопления, Гкал/ч

где Qо.р.- расчетное значение расхода теплоты на систему отопления, Гкал/ч

Расчетный расход теплоносителя в системе отопления присоединенной по независимой схеме:

Рисунок 371. Расчетный расход на СО по независимой схеме

где: t1.р, t2.р.- расчетная температура нагреваемого теплоносителя (второй контур) соответственно на выходе и входе в теплообменный аппарат, ºС;

Расчетный расход теплоносителя в системе вентиляции определяется по формуле:

Рисунок 372. Расчетный расход на СВ

где: Qв.р.- расчетная нагрузка на систему вентиляции Гкал/ч;

τ2.в.р.- расчетная температура сетевой воды после калорифера системы вентиляции, ºС.

Расчетный расход теплоносителя на систему горячего водоснабжения (ГВС) для открытых систем теплоснабжения определяется по формуле:

Рисунок 373. Расчетный расход на открытые системы ГВС

Расход воды на горячее водоснабжение из подающего трубопровода тепловой сети:

Рисунок 374. Расход на ГВС из подающего

где: β- доля отбора воды из подающего трубопровода, определяемая по формуле:

Рисунок 375. Доля отбора воды из подающего

Расход воды на горячее водоснабжение из обратного трубопровода тепловой сети:

Рисунок 376. Расход на ГВС из обратного

Расчетный расход теплоносителя (греющей воды) на систему ГВС для закрытых систем теплоснабжения при параллельной схеме включения подогревателей на систему горячего водоснабжения:

Рисунок 377. Расход на ГВС 1 контура при параллельной схеме

где: τ1.и.- температура сетевой воды в подающем трубопроводе в точке излома температурного графика,ºС;

τ2.т.и.- температура сетевой воды после подогревателя в точке излома температурного графика (принимается = 30 ºС);

[3]

Параметры теплового режима при вводе в МКД

Вопрос :

Каковы параметры теплового режима при вводе в МКД?

Ответ :

Температура сетевой воды в подающих трубопроводах должны соответствовать с заданным графиком, согласно Правилам технической эксплуатации тепловых энергоустановок, утвержденных Приказом Министерства энергетики РФ от 24.03.2003 г. N 115 (далее — Правила N 115).

Графики зависимости температур теплоносителя в подающем и обратном трубопроводе называются температурным графиком системы теплоснабжения.

Температурный график теплоисточника — это кривая, которая определяет, какая должна быть температура теплоносителя при фактической температуре наружного воздуха

Источник: https://domtriumf18.ru/kak-raschitat-temperaturu-teplonositelya-na-vvode-i-vyohode/

Нормативы температуры теплоносителя системе отопления

Температура теплоносителя на входе

Какой должна быть температура теплоносителя в системе отопления, чтобы в доме жилось комфортно? Этот момент интересует многих потребителей.

При выборе температурного режима, учитывается несколько факторов:

  • необходимость достижения нужной степени обогрева помещений;
  • обеспечение надежной, стабильной, экономичной и продолжительной работы отопительного оборудования;
  • эффективная передача тепловой энергии по трубопроводам.

Температура теплоносителя в отопительной сети

Система теплоснабжения обязана функционировать таким образом, чтобы в помещении было комфортно находиться, поэтому и установлены нормы. Согласно нормативным документам, температура в жилых домах не должна опускаться ниже 18 градусов, а для детских учреждений и больниц — это 21 градус тепла.

Но следует учитывать, что в зависимости от температуры воздуха снаружи здания строение через ограждающие конструкции может терять разную величину тепла.

Поэтому температура теплоносителя в системе отопления, исходя из внешних факторов, варьируется пределе от 30 до 90 градусов. При нагреве воды свыше в отопительной конструкции начинается разложение лакокрасочных покрытий, что запрещено санитарными нормами.

Чтобы определить, какая должна быть температура теплоносителя в батареях, используют специально разработанные температурные графики для конкретных групп зданий. В них отражена зависимость степени нагрева теплоносителя от состояния наружного воздуха.

Также можно задействовать автоматическую регулировку согласно показаниям датчика температуры отопления. расположенного в помещении.

Оптимальная температура для котельной

Для обеспечения эффективной теплоотдачи в котлах отопления должна быть более высокая температура, поскольку, чем больше тепла может перенести определенный объем воды, тем лучше степень обогрева. Поэтому на выходе из теплогенератора стараются приблизить температуру жидкости к максимально допустимым показателям.

Помимо этого, минимальный нагрев воды или другого теплоносителя в котле нельзя опускать ниже точки росы (обычно данный параметр равен 60-70 градусов, но он во многом зависит от технических особенностей модели агрегата и вида топлива). В противном случае при горении теплогенератора появляется конденсат, который в соединении с агрессивными веществами, имеющимися в составе дымовых газов, приводит к повышенному износу прибора.

Согласование температуры воды в котле и системе

Существует два варианта, как можно согласовать высокотемпературные теплоносители в котле и более низкотемпературные в отопительной системе:

  1. В первом случае следует пренебречь эффективностью функционирования котла и на выходе из него выдавать теплоноситель такой степени нагрева, которая требуется системе в настоящее время. Так поступают в работе небольших котельных. Но в итоге получается не всегда подавать теплоноситель в соответствии с оптимальным температурным режимом согласно графику (прочитайте: «График отопительного сезона — начало и конец сезона «). В последнее время все чаще в небольших котельных на выходе монтируют регулятор нагрева воды с учетом показаний, который фиксирует датчик температуры теплоносителя.
  2. Во втором случае, нагрев воды для транспортировки по сетям на выходе из котельной делают максимальным. Далее в непосредственной близости от потребителей производится автоматическое регулирование температуры теплоносителя до необходимых значений. Такой способ считается более прогрессивным, его применяют на многих крупных теплосетях, а поскольку регуляторы и датчики стали дешевле, его все чаще используют на небольших объектах теплоснабжения.

Принцип работы регуляторов отопления

Регулятор температуры теплоносителя, циркулирующего в отопительной системе — это прибор, с помощью которого обеспечивается автоматический контроль и корректировка температурных параметров воды.

Состоит данное устройство, изображенное на фото, из следующих элементов:

  • вычислительный и коммутирующий узел;
  • рабочий механизм на трубе подачи горячего теплоносителя;
  • исполнительный блок, предназначенный для подмеса теплоносителя, поступающего из обратки. В ряде случаев устанавливают трехходовой кран;
  • повысительный насос на участке подачи;
  • не всегда повысительный насос на отрезке «холодного перепуска»;
  • датчик на линии подачи теплоносителя;
  • клапаны и запорная арматура;
  • датчик на обратке;
  • датчик температуры наружного воздуха;
  • несколько датчиков температуры помещения.

Теперь необходимо разобраться, как происходит регулирование температуры теплоносителя и как функционирует регулятор.

На выходе из отопительной системы (обратке) температура теплоносителя зависит от объема воды, прошедшей через нее, поскольку нагрузка является относительно постоянной величиной. Прикрывая подачу жидкости, регулятор тем самым увеличивает разность между линией подачи и обраткой до требуемого значения (на данных трубопроводах устанавливают датчики).

Когда наоборот необходимо увеличить поток теплоносителя, тогда в систему теплоснабжения врезают повысительный насос, которым тоже управляет регулятор. С целью понижения температуры водяного входящего потока применяют холодный перепуск», который означает, что часть носителя тепла, уже проциркулировавшего по системе, вновь направляют на вход.

В результате регулятор, перераспределяя потоки теплоносителя в зависимости от данных, зафиксированных датчиком, обеспечивает соблюдение температурного графика отопительной системы.

Нередко такой регулятор комбинируют с регулятором горячего водоснабжения с помощью одного вычислительного узла. Прибор, регулирующий ГВС, проще в управлении и в части исполнительных механизмов.

При помощи датчика на линии горячего водоснабжения выполняется регулировка прохода воды через бойлер и в итоге она стабильно имеет стандартные 50 градусов (прочитайте: «Отопление через водонагреватель «).

Преимущества применения регулятора в теплоснабжении

Использование регулятора в отопительной системе имеет следующие положительные моменты:

  • он позволяет четко выдерживать температурный график, в основе которого лежит расчет температуры теплоносителя (прочитайте: «Правильный расчет теплоносителя в системе отопления «);
  • не допускается повышенный нагрев воды в системе и тем самым обеспечивается экономное расходование топлива и тепловой энергии;
  • производство тепла и его транспортировка происходят в котельных при самых эффективных параметрах, а необходимые для обогрева характеристики теплоносителя и ГВС создает регулятор в ближайшем к потребителю тепловом узле или пункте (прочитайте: «Теплоноситель для системы отопления — параметры давления и скорости «);
  • для всех абонентов теплосети обеспечиваются одинаковые условия вне зависимости от расстояния до источника теплообеспечения.

Посмотрите также видео о циркуляции теплоносителя в системе отопления:

Нормы температуры

Требования к температуре теплоносителя изложены в нормативных документах, которые устанавливают проектирование, укладку и использование инженерных систем жилых и общественных сооружений. Они описаны в Государственных строительных нормах и правилах:

  • ДБН (В. 2.5-39 Тепловые сети);

Источник: https://msklimat.ru/normativy-temperatury-teplonositelya-sisteme-otopleniya.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.