Схема работы итп

Содержание

Итп в многоквартирном доме принцип работы. ИТП — индивидуальный тепловой пункт, принцип работы

Схема работы итп

В условиях постоянного роста платы за коммунальные услуги вопрос экономичного расхода воды и энергоресурсов становится более острым. Многие собственники жилья не имеют представления о существовании . Тогда как они помогают сэкономить до 40% коммунальных ресурсов.

Современные ИТП выгодно отличаются от устаревших систем бойлеров без автоматизации. Если вы заинтересованы в снижении платы за коммунальные ресурсы и экономии своих средств, то вам требуется произвести установку узла учета тепловой энергии и согласовать с управляющей компанией дома обустройство ИТП.

Что необходимо для автоматизированного теплового пункта?

В состав необходимого оборудования для ИТП входит:

Арматура для регулирования действия ИТП;

Приборы для замеров расхода энергии;

Щиты электроуправления;

Индикаторы и контроллеры

В большинстве случаев ИТП располагается как отдельный объект, вынесенный за переделы жилого дома, к которому он подключен. Только в новостройках может быть изначально заложена возможность установки индивидуальной котельной.

Тепловой пункт

Тепловой пункт (ТП) – комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.

Тепловой пункт и присоединённое здание

Назначение

Основными задачами ТП являются:

  • Преобразование вида теплоносителя
  • Контроль и регулирование параметров теплоносителя
  • Распределение теплоносителя по системам теплопотребления
  • Отключение систем теплопотребления
  • Защита систем теплопотребления от аварийного повышения параметров теплоносителя

Виды тепловых пунктов

ТП различаются по количеству и типу подключенных к ним систем теплопотребления, индивидуальные особенности которых определяют тепловую схему и характеристики оборудования ТП, а также по типу монтажа и особенностям размещения оборудования в помещении ТП. Различают следующие виды ТП :

  • Индивидуальный тепловой пункт (ИТП). Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.
  • Центральный тепловой пункт (ЦТП). Используется для обслуживания группы потребителей (зданий, промышленных объектов). Чаще располагается в отдельностоящем сооружении, но может быть размещен в подвальном или техническом помещении одного из зданий.
  • Блочный тепловой пункт (БТП). Изготавливается в заводских условиях и поставляется для монтажа в виде готовых блоков. Может состоять из одного или нескольких блоков. Оборудование блоков монтируется очень компактно, как правило, на одной раме. Обычно используется при необходимости экономии места, в стесненных условиях. По характеру и количеству подключенных потребителей БТП может относиться как к ИТП, так и к ЦТП.

Источники тепла и системы транспорта тепловой энергии

Источником тепла для ТП служат теплогенерирующие предприятия (котельные , теплоэлектроцентрали). ТП соединяется с источниками и потребителями тепла посредством тепловых сетей.

Тепловые сети подразделяются на первичные магистральные теплосети , соединяющие ТП с теплогенерирующими предприятиями, и вторичные (разводящие) теплосети, соединяющие ТП с конечными потребителями.

Участок тепловой сети, непосредственно соединяющий ТП и магистральные теплосети, называется тепловым вводом.

Магистральные тепловые сети, как правило, имеют большую протяженность (удаление от источника тепла до 10 км и более). Для строительства магистральных сетей используют стальные трубопроводы диаметром до 1400 мм.

В условиях, когда имеется несколько теплогенерирующих предприятий, на магистральных теплопроводах делаются закольцовки, объединяющие их в одну сеть. Это позволяет увеличить надёжность снабжения тепловых пунктов, а, в конечном счёте, потребителей теплом.

Например, в городах, в случае аварии на магистрали или местной котельной, теплоснабжение может взять на себя котельная соседнего района. Также, в некоторых случаях, общая сеть даёт возможность распределять нагрузку между теплогенерирующими предприятиями.

В качестве теплоносителя в магистральных теплосетях используется специально подготовленная вода . При подготовке в ней нормируются показатели карбонатной жёсткости, содержания кислорода, содержания железа и показатель pH.

Неподготовленная для использования в тепловых сетях (в том числе водопроводная, питьевая) вода непригодна для использования в качестве теплоносителя, так как при высоких температурах, вследствие образования отложений и коррозии, будет вызывать повышенный износ трубопроводов и оборудования. Конструкция ТП предотвращает попадание относительно жёсткой водопроводной воды в магистральные теплосети.

Вторичные тепловые сети имеют сравнительно небольшую протяженность (удаление ТП от потребителя до 500 метров) и в городских условиях ограничиваются одним или парой кварталов. Диаметры трубопроводов вторичных сетей, как правило, находятся в пределах от 50 до 150 мм.

При строительстве вторичных тепловых сетей могут использоваться как стальные, так и полимерные трубопроводы.

Использование полимерных трубопроводов наиболее предпочтительно, особенно для систем горячего водоснабжения, так как жёсткая водопроводная вода в сочетании с повышенной температурой приводит к интенсивной коррозии и преждевременному выходу из строя стальных трубопроводов. В случае с индивидуальным тепловым пунктом вторичные тепловые сети могут отсутствовать.

Источником воды для систем холодного и горячего водоснабжения служат водопроводные сети .

Системы потребления тепловой энергии

В типичном ТП имеются следующие системы снабжения потребителей тепловой энергией:

Принципиальная схема теплового пункта

Схема ТП зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Принципиальная схема теплового пункта

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС.

В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости.

При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно.

По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления.

Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

Литература

  • Соколов Е.Я. Теплофикация и тепловые сети: учебник для вузов. – 8-е изд., стереот. / Е.Я. Соколов. – М.: Издательский дом МЭИ, 2006. – 472 с.: ил.

Источник: https://sebiz.ru/it-is-in-the-apartment-house-the-principle-of-work-itp-individual-heat-point-the-principle-of-operation.html

Индивидуальный тепловой пункт (ИТП): состав системы и применение

Схема работы итп

К индивидуальным тепловым пунктам (ИТП) относят – отдельно стоящие небольшие здания или отведённые изолированно помещения, в которых располагаются разные элементы оборудования, подающего тепло в здания (точки потребления).

Объект позволяет:

  • подключиться к централизованной сети теплоподачи, водоснабжению, электричеству;
  • использовать разные теплоносители;
  • модифицировать структуру в любое время;
  • управлять уровнем потребления тепловой энергии;
  • выставлять режимы.

Такие установки показывают высокую работоспособность, длительные сроки эксплуатации и удобство. Электропитание необходимо для работы насосных установок.

Что входит в общие задачи системы

Предназначение индивидуального теплопункта состоит в выполнении целого ряда задач и функций.

Направленность использования заключается в том, чтобы обеспечивать помещения:

  • хорошей вентиляцией;
  • горячей водой;
  • нагревом помещений жилых домов, коммунальных администраций, а также – производственных предприятий, организаций и целых комплексов.

Задачами является следующее – ИТП должен:

  1. Учитывать, сколько расходует тепла и его носителя.
  2. Защищать тепловую систему от переизбытка теплоносителя в параметрах. В противном случае это может повлечь за собой аварийные ситуации.
  3. Своевременно отключать работу потребительских систем.
  4. Равномерно распределять внутри системы прохождение теплоносителя.
  5. Осуществлять контрольно-регулировочные функции над жидкостью, циркулирующей по трубам и радиаторам. 
  6. Обеспечивать успешное преобразование одного теплоносителя в другой вид. Например, сделать переход из воды к антифризу или пропиленгликолю.

Если говорить о малых вариантах установок, то они вполне годятся для обслуживания жилого дома на одну среднюю семью, либо маленького здания под офис, контору и прочее. Когда речь заходит о крупномасштабных сооружениях, то они уже подают тепло для многоквартирных домов и больших зданий. Такие пункты и мощность имеют большую 50 кВт – 2 МВт.

Преимущества индивидуальных тепловых пунктов

К плюсам слаженной работы автоматизированного преобразователя ИТП относят:

  1. Очевидную экономию в денежных тратах – на 40-60% меньше только одних расходов на содержание и использование установки.
  2. Сниженное потребление тепловой энергии на 30%, если сравнить неавтоматизированными пунктами.
  3. Точность наладки режимов доводит сокращение теплопотерь до 15%.
  4. Бесшумность в работе.
  5. Компактность в монтаже и её связь с нагрузкой. Например, агрегатная система производительностью до 2 Гкал/ч будет иметь место по площади всего 25-30 кв.м.
  6. Удобство размещения – можно оборудовать подвальное помещение любого здания.
  7. Автоматизация рабочего процесса, что приводит к сокращению численности персонала.
  8. У обслуживающих операторов не обязательно должна быть высокая квалификация в должности.
  9. Возможность выставлять оптимальные режимы в разные дни – праздники, выходные, в периоды сложностей погодных условий.

Такие пункты эффективно сберегают энергию, служат средством для обеспечения в помещении комфорта. Производители часто выпускают такие системы под заказ, что позволяет их максимально удобно спроектировать в индивидуальном порядке.

Учётные приборы

Прибор для учёта позволяют правильно рассчитать объемы потребляемой тепловой энергии, которые необходимы для расчетного взаимодействия между предприятием, подающим услуги и абонентом, их потребляющим. Это исключает риск завышения значений нагрузки поставщиками тепла. Приборы учета нужны для следующих операций:

  1. Создание комфортных отношений компании с клиентами-абонентами в виде точных взаиморасчетов.
  2. Ведение в документальной форме истории рабочих параметров системы (давление, расход теплоносителя, и температура).
  3. Рациональное использование всей энергоподающей системы – гидравлика, тепловой режим и контроль над этим.

Прибор учёта имеет следующую комплектацию:

  • счетчик;
  • манометр и танометр;
  • преобразователи – на расход и подачу;
  • фильтр (сетчато-магнитный).

Как обслуживается:

  1. Считывающее устройство включают и снимают показания.
  2. Проводят анализ.
  3. Выясняют причин сбоев.
  4. Проверяют пломбы на целостность.
  5. Снова делают анализ.
  6. Проверяют и сравнивают показания температур посредством термометров на трубопроводах.
  7. Проверка контактов заземления.
  8. Дополнение масла в гильзах.
  9. Очищение фильтров и иных участков от грязи и пыли.

Конструктивная схема

Узлы конструкции:

  • учётный прибор;
  • ввод от теплосети;
  • точки для подключения – вентиляции, отопления, горячей воды;
  • область для согласования давления между уровнями снабжения и потребления;
  • независимая схема запитывания от отопления или вентиляции (подбирается в качестве дополнительной комплектации).

Виды ИПТ по типу систем потребления тепловой энергии

Системы можно использовать стандартные, а можно сделать комбинированными. Так классические варианты подбора систем обеспечения теплом заключаются в следующей комплектации к общей схеме ИТП:

  1. Функция отопления.
  2. Подача горячей воды.
  3. Совмещение двух функций – отопления и горячего водоснабжения (ГВС).
  4. Совмещение подачи горячей воды и теплой вентиляции.
Направленность ИТПОписание системыДополнительно
Только отоплениеТип схемы – независимая:- пластинчатый теплообменник с 100-процентной нагрузкой;- сдвоенный насос;- запитывание от обратного трубопровода теплосети.– блок горячей воды;- учетные приборы и иные узлы.
ГВСТип схемы – параллельная, одноступенчатая:- теплообменник – 2 шт. по 50% нагрузки, пластинчатые;- группа насосных установок.– блок отопления;- учетные приборы и прочее.
Отопление + ГВСТип схемы отопления – независимая, для ГВС – независимая, двухступенчатая:- пластинчатый теплообменник с 100-процентной нагрузкой;- группы насосов;- запитывание из обратного трубопровода теплосети насосом;- прибор учета;- пластинчатых теплообменника 2 (для ГВС);- запитывание от холодного водоснабжения (для ГВС).По желанию заказчика
Отопление + ГВС + ВентиляцияСхемы независимые, ГВС – независимая и параллельная, 1-ступенчатая:- для вентиляции встроен пластинчатый теплообменник с нагрузкой 100%;- для ГВС – 2 теплообменника пластинчатых по 50% нагрузки на каждый;- группа насосных установок;- запитывание – обратный трубопровод и холодная вода для ГВС.Приборы учета

По какому принципу функционирует пункт

Самая распространенная схема подключения ИТП – это независимая отопительная и независимая закрытая система ГВС. Принцип работы для индивидуального объекта теплоподачи заключается в следующих процессах:

  1. Подающий трубопровод снабжает пункт теплоносителем, который, в свою очередь, отдаёт тепловую энергию подогревателям и вентиляции.
  2. Далее носитель устремляется к обратному трубопроводу, а затем, для повторного использования на магистраль предприятия, где происходит первичная тепловая генерация.
  3. Какой объем теплоносителя расходуется точками потребления, чтобы восполнять потери тепла.
  4. Вода (холодная) из водопровода течет через насос по трубам. Потом часть нагревается и перетекает в циркуляционный контур ГВС, часть отдается точкам потребления.
  5. Горячая вода, циркулируя по системе, постепенно нагревает емкости (радиаторы, трубы), которые и отдают тепло.

Документы для Энергонадзора

Чтобы успешно был проведен допуск в эксплуатацию, в службу Энергонадзора предоставляются следующий пакет бумаг:

  • техусловия, справка по подключению установки энергоснабжающей организацией;
  • проект, согласования;
  • акты – ответственности, готовности системы, приёмки выполненных работ, скрытые работы, промывке системы, допуска к безопасному эксплуатированию;
  • паспорт ИТП;
  • справка о готовности пункта;
  • справка о том, что с энергоснабжающим предприятием заключено соглашение;
  • перечень лиц, ответственных за обслуживание и ремонт системы;
  • приказ о том, что назначен ответственное лицо, прикрепленное за ИТП;
  • свидетельство специалиста сварочных работ (копия);
  • сертификаты качества на комплектующие и элементы;
  • инструкции должностей по обеспечению пожарной и эксплуатационной безопасности;
  • инструкция по эксплуатации пункта;
  • журнал КИПа, где отмечаются наряды, допуски, дефекты и иное;
  • наряд на подключение тепловых сетей к ИТП.

Квалификация у обслуживающего персонала ИТП должна быть обязательно, но не требуется её высокий уровень. Поэтому все операторы, допускаемые к использованию и содержанию пункта, проходят обучение. В период перекрытой системы водоподачи насосы запускать не разрешается.

Показатели манометров следует регулярно наблюдать, отслеживать порог давления, регулировать по схеме и инструкции. Также крайне важно не допускать перегрева электродвигателей, повышенного уровня вибраций, шума.

Перекрывая клапаны, чрезмерных усилий делать не нужно, разбирать регуляторы во время скачка давления строго воспрещается. Перед эксплуатацией система внутри должна быть промыта.

Источник: https://bvzd.ru/vopros/individualnyy-teplovoy-punkt-itp-sostav-sistemy-i-primenenie

Устройство ИТП (теплоузла)

Схема работы итп

 Как мы видим из фото, в ИТП заходят два трубопровода – подача и обратка. Рассмотрим все последовательно.

На подаче (это верхний трубопровод) обязательно на вводе в теплоузел стоит задвижка, она так и называется – вводная. Задвижка эта обязательно должна быть стальная, ни в коем случае не чугунная.

Это один из пунктов «Правил технической эксплуатации тепловых энергоустановок», которые были введены в действие с осени 2003 года.

Связано это с особенностями централизованного теплоснабжения, или центрального отопления, другими словами. Дело в том, что такая система предусматривает большую протяженность, и много потребителей от источника теплоснабжения. Соответственно, чтобы у последнего по очереди потребителя хватало давления, на начальных и далее участках сети держат давление повыше.

Так, например, мне в работе приходится сталкиваться с тем, что в теплоузел приходит давление 10-11 кгс/см² на подаче. Чугунные задвижки могут и не выдержать такого давления. Поэтому, от греха подальше, по «Правилам технической эксплуатации»  решено от них отказаться. После вводной задвижки стоит манометр.

Ну с ним все понятно, мы должны знать давление на вводе в здание.

Затем грязевик, назначение его становится понятно из названия – это фильтр грубой очистки. Кроме давления, мы должны еще обязательно знать и температуру воды в подаче на вводе. Соответственно, обязательно должен быть термометр, в данном случае термометр сопротивления, показания которого выведены на электронный тепловычислитель.

Далее следует очень важный элемент схемы теплоузла – регулятор давления РД. Остановимся на нем поподробнее, для чего он нужен? Я уже писал выше, что давления в ИТП приходит с избытком, его больше, чем нужно для нормальной работы элеватора (о нем чуть позже), и приходится это самое давление сбивать до нужного перепада перед элеватором.

Иногда даже бывает так, мне приходилось сталкиваться, что давления на вводе так много, что одного РД мало и приходится еще ставить шайбу (регуляторы давления тоже имеют предел сбрасываемого давления), в случае превышения этого предела начинают работать в режиме кавитации, то есть вскипания, а это вибрация и т.д. и т.п.

Регуляторы давления тоже имеют много модификаций, так есть РД, у которых две импульсные линии (на подаче и на обратке), и таким образом они становятся и регуляторами расхода.

В нашем случае это это так называемый регулятор давления прямого действия «после себя», то есть он регулирует давление после себя,что нам собственно и нужно.

         И еще про дросселирование давления. До сих пор иногда  приходится видеть такие теплоузлы, где сделано шайбирование ввода, то есть когда вместо регулятора давления стоят дроссельные диафрагмы, или проще говоря, шайбы.

Очень не советую такую практику, это каменный век. В этом случае у нас получается не регулятор давления и расхода, а попросту ограничитель расхода, не более того.

Подробно расписывать принцип действия регулятора давления «после себя» не стану, скажу только, что принцип этот основан на уравновешивании давления в импульсной трубке (то есть давления в трубопроводе после регулятора) на диафрагму РД  силой натяжения пружины регулятора.

И это давление  после регулятора (то есть после себя) можно регулировать, а именно выставлять больше или меньше с помощью гайки настройки РД.

         После регулятора давления стоит фильтр перед счетчиком потребления теплоэнергии. Ну думаю, функции фильтра понятны. Немного о теплосчетчиках. Счетчики существуют сейчас разных модификаций. Основные типы счетчиков: тахометрические (механические), ультразвуковые, электромагнитные, вихревые. Так что выбор есть.

В последнее время большую популярность приобрели электромагнитные счетчики. И это неспроста, есть у них ряд преимуществ. Но в данном случае у нас счетчик тахометрический (механический) с турбиной вращения, сигнал с расходомера выведен на электронный тепловычислитель.

Затем после счетчика теплоэнергии идут ответвления на вентиляционную нагрузку (калориферы), если она есть, на нужды горячего водоснабжения. 

         На горячее водоснабжение идут две линии с подачи и с обратки, и через регулятор температуры ГВС на водоразбор. О нем я писал в этой статье.  В данном случае регулятор исправный, рабочий, но так как система ГВС тупиковая, эффективность его снижается.

Следующий элемент схемы очень важный, пожалуй, самый важный в теплоузле – это можно сказать, сердце отопительной системы. Я говорю об узле смешения – элеваторе. Схема  зависимая со смешением в элеваторе была предложена выдающимся нашим ученым В.М.

Чаплиным, и стала повсеместно внедряться в капитальном строительстве с 50х годов по самый закат Советской империи.

         Правда, Владимир Михайлович предлагал со временем (при удешевлении электроэнергии)  заменить элеваторы смесительными насосами. Но про эти его идеи как то забыли. Элеватор состоит из нескольких основных частей.

Это всасывающий коллектор ( вход с подачи), сопло (дроссель), камера смешения (средняя часть элеватора, где смешиваются два потока и подравнивается давление), приемная камера (подмес с обратки ), и диффузор (выход с элеватора непосредственно в теплосеть с установившимся давлением).

         Немного о принципе работы элеватора, его преимуществах и недостатках. Работа элеватора основана на основном, можно сказать, законе гидравлики – законе Бернулли.

Который, в свою очередь, если обойтись без формул гласит о том, что сумма всех давлений в трубопроводе – динамического давления (скорости), статического давления на стенки трубопровода и давления веса жидкости всегда остается постоянной, при любых изменениях потока.

Так как мы имеем дело с горизонтальным трубопроводом, то давлением веса жидкости приблизительно можно пренебречь.

Соответственно, при снижении статического давления, то есть при дросселировании через сопло элеватора, возрастает динамическое давление (скорость), при этом сумма этих давлений  остается неизменной. В конусе элеватора образуется разрежение, и вода из обратки подмешивается в подачу.

        То есть элеватор работает  как смесительный насос.  Вот так все просто, никаких насосов с электроприводом и т.д. Для недорогого  капитального строительства с высокими темпами, без особого учета теплоэнергии — самый верный вариант. Так и было в советское время и это было оправдано. Однако у элеватора есть не только достоинства, но и недостатки.

Основных два: для его нормальной работы  перед ним нужно держать относительно высокий перепад давления (а это соответственно сетевые насосы с большой мощностью и немалый  расход электроэнергии), и второй и самый главный недостаток — механический элеватор практически не подается регулировке.

То есть, как выставили сопло, в таком режиме он и будет работать весь отопительный сезон, и в мороз и в оттепель.

        Особенно ярко этот недостаток проявляется на «полочке» температурного графика, об этом я писал здесь. В данном случае на фото у нас погодозависимый элеватор с регулируемым соплом, то есть внутри элеватора игла ходит в зависимости от температуры на улице, и расход либо увеличивается, либо уменьшается.

Это более модернизированный вариант по сравнению  с механическим элеватором. Это тоже, на мой взгляд, не самый оптимальный, не самый энергоемкий вариант, но об этом не в этой статье. После элеватора, собственно, вода идет уже непосредственно к потребителю, и сразу за элеватором стоит домовая задвижка подачи.

После домовой задвижки манометр и термометр, давление и температуру после элеватора нужно знать и контролировать обязательно.

        На фото еще и термопара (термометр) для измерения температуры и выдачи значения температуры  в контроллер, но если элеватор механический, ее соответственно нет.  Далее идет уже разветвление по веткам потребления, и на каждой ветке тоже по домовой задвижке.Движение теплоносителя по подаче в ИТП мы рассмотрели, теперь об обратке.

Сразу на выходе обратки с дома в теплоузел устанавливается предохранительный клапан. Назначение предохранительного клапана – сбросить давление в случае превышение нормируемого давления. То есть при превышении этой цифры ( для жилых домов 6 кгс/см² или 6 бар) клапан срабатывает и начинает сбрасывать воду.

Таким образом мы предохраняем внутреннюю систему отопления, особенно радиаторы от скачков давления.

        Далее идут домовые задвижки, в зависимости от количества веток отопления. Также должен быть манометр, давление с дома тоже нужно знать.

Кроме того по разнице показаний манометров на подаче и обратке с дома можно очень приблизительно прикинуть сопротивление системы, проще говоря потери давления. Затем следует подмес с обратки в элеватор, ветки нагрузки на вентиляцию с обратки,  грязевик ( про него я писал выше).

Далее ответвление с обратки на горячее водоснабжение, на котором в обязательном порядке должен быть установлен обратный клапан.

        Функция клапана в том, что он пропускает поток воды только в одном направлении, обратно вода течь не может. Ну и далее по аналогии с подачей фильтр на счетчик, сам счетчик, термометр сопротивления. Далее вводная задвижка на обратке и после нее манометр, давление, которое уходит от дома в сеть, тоже нужно знать.

        Мы рассмотрели стандартный индивидуальный тепловой пункт зависимой системы отопления с элеваторным подключением, при открытом водоразборе горячей воды, горячее водоснабжение по тупиковой схеме. Незначительные отличия в разных ИТП при такой схеме могут быть, но основные элементы схемы обязательны.

      По вопросам приобретения любого тепломеханического оборудования в ИТП можно обращаться непосредственно ко мне по эл.адресу: ol49@mail.ru

       Совсем недавно я написал и выпустил книгу «Устройство ИТП (тепловых пунктов) зданий».

В ней на конкретных примерах я рассмотрел различные схемы ИТП, а именно схему ИТП без элеватора, схему теплового пункта с элеватором, и наконец, схему теплоузла с циркуляционным насосом и регулируемым клапаном. Книга основана на моем практическом опыте, я старался писать ее максимально понятно, доступно.

Вот содержание книги:

1. Введение

2. Устройство ИТП, схема без элеватора

3. Устройство ИТП, элеваторная схема

4. Устройство ИТП, схема с циркуляционным насосом и регулируемым клапаном.

5. Заключение

Просмотреть книгу можно по ссылке ниже:

Устройство ИТП (тепловых пунктов) зданий.

Источник: https://teplosniks.ru/teplosnabzhenie/rabota-itp.html

Тепловой пункт индивидуальный (ИТП): схема, принцип работы, эксплуатация

Схема работы итп

Тепловой пункт индивидуальный представляет собой целый комплекс устройств, располагаемый в отдельном помещении, включающий в себя элементы теплового оборудования. Он обеспечивает подключение к тепловой сети этих установок, их трансформацию, управление режимами теплопотребления, работоспособность, распределение по типам потребления теплоносителя и регулирование его параметров.

Тепловой пункт индивидуальный

Тепловая установка, занимающаяся обслуживанием здания или отдельных его частей, является индивидуальным тепловым пунктом, или сокращенно ИТП. Предназначен он для обеспечения горячим водоснабжением, вентиляцией и теплом жилых домов, объектов жилищно-коммунального хозяйства, а также производственных комплексов.

Для его функционирования потребуется подключение к системе водо- и тепло-, а также электроснабжения, необходимого для активации циркуляционного насосного оборудования.

Малый тепловой пункт индивидуальный может использоваться в доме на одну семью или небольшом строении, подключенном непосредственно к централизованной сети теплоснабжения. Такое оборудование рассчитано на отопление помещений и подогрев воды.

Большой индивидуальный тепловой пункт занимается обслуживанием больших или многоквартирных строений. Мощность его находится в пределах от 50 кВт до 2 МВт.

Основные задачи

Тепловой пункт индивидуальный обеспечивает выполнение следующих задач:

  • Учет расхода тепла и теплоносителя.
  • Защита системы теплоснабжения от аварийного увеличения параметров теплоносителя.
  • Отключение системы теплопотребления.
  • Равномерное распределение теплоносителя по системе теплопотребления.
  • Регулировка и контроль параметров циркулирующей жидкости.
  • Преобразование вида теплоносителя.

Преимущества

  • Высокая экономичность.
  • Многолетняя эксплуатация индивидуального теплового пункта показала, что современное оборудование этого типа, в отличие от других неавтоматизированных процессов, потребляет на 30% меньше тепловой энергии.
  • Эксплуатационные затраты снижаются примерно на 40-60%.

  • Выбор оптимального режима теплопотребления и точная наладка позволят до 15% сократить потери тепловой энергии.
  • Бесшумная работа.
  • Компактность.
  • Габаритные размеры современных тепловых пунктов напрямую связаны с тепловой нагрузкой.

    При компактном размещении индивидуальный тепловой пункт с нагрузкой до 2 Гкал/час занимает площадь в 25-30 м2.

  • Возможность расположения данного устройства в подвальных малогабаритных помещениях (как в существующих, так и во вновь построенных зданиях).
  • Процесс работы полностью автоматизирован.

  • Для обслуживания этого теплового оборудования не требуется высококвалифицированный персонал.
  • ИТП (индивидуальный тепловой пункт) обеспечивает в помещении комфорт и гарантирует эффективное энергосбережение.

  • Возможность установки режима, ориентируясь на время суток, применения режима выходного и праздничного дня, а также проведения погодной компенсации.
  • Индивидуальное изготовление в зависимости от требований заказчика.

Основой энергосберегающих мероприятий является прибор учета.

Требуется этот учет для выполнения расчетов за количество потребляемой тепловой энергии между теплоснабжающей компанией и абонентом. Ведь очень часто расчетное потребление значительно больше фактического по причине того, что при расчете нагрузки поставщики тепловой энергии завышают их значения, ссылаясь на дополнительные расходы. Подобных ситуаций позволит избежать установка приборов учета.

Назначение приборов учета

  • Обеспечение между потребителями и поставщиками энергоресурсов справедливых финансовых взаиморасчетов.

  • Документирование параметров системы теплоснабжения, таких как давление, температура и расход теплоносителя.
  • Контроль за рациональным использованием энергосистемы.

  • Контроль за гидравлическим и тепловым режимом работы системы теплопотребления и теплоснабжения.

Классическая схема прибора учета

  • Счетчик тепловой энергии.
  • Манометр.
  • Термометр.
  • Термический преобразователь в обратном и подающем трубопроводе.
  • Первичный преобразователь расхода.
  • Сетчато-магнитный фильтр.

Обслуживание

  • Подключение считывающего устройства и последующее снятие показаний.
  • Анализ ошибок и выяснение причин их появления.
  • Проверка целостности пломб.
  • Анализ результатов.

  • Проверка технологических показателей, а также сравнение показаний термометров на подающем и обратном трубопроводе.
  • Долив масла в гильзы, чистка фильтров, проверка контактов заземления.
  • Удаление загрязнений и пыли.

  • Рекомендации по правильной эксплуатации внутренних сетей теплоснабжения.

Схема теплового пункта

В классическую схему ИТП входят следующие узлы:

  • Ввод тепловой сети.
  • Прибор учета.
  • Подключение системы вентиляции.
  • Подключение отопительной системы.
  • Подключение горячего водоснабжения.
  • Согласование давлений между системами теплопотребления и теплоснабжения.
  • Подпитка подключенных по независимой схеме отопительных и вентиляционных систем.

При разработке проекта теплового пункта обязательными узлами являются:

  • Прибор учета.
  • Согласование давлений.
  • Ввод тепловой сети.

Комплектация другими узлами, а также их количество выбирается в зависимости от проектного решения.

Системы потребления

Стандартная схема индивидуального теплового пункта может иметь следующие системы обеспечения тепловой энергией потребителей:

  • Отопление.
  • Горячее водоснабжение.
  • Отопление и горячее водоснабжение.
  • Отопление, горячее водоснабжение и вентиляция.

Итп для отопления

ИТП (индивидуальный тепловой пункт) – схема независимая, с установкой пластинчатого теплообменника, который рассчитан на 100% нагрузку. Предусмотрена установка сдвоенного насоса, компенсирующего потери уровня давления. Подпитка отопительной системы предусмотрена от обратного трубопровода тепловых сетей.

Данный тепловой пункт может быть дополнительно укомплектован блоком горячего водоснабжения, прибором учета, а также другими необходимыми блоками и узлами.

Итп для гвс

ИТП (индивидуальный тепловой пункт) – схема независимая, параллельная и одноступенчатая. Комплектацией предусмотрены два теплообменника пластинчатого типа, работа каждого из них рассчитана на 50% нагрузки. Предусмотрена также группа насосов, предназначенных для компенсации понижения давления.

Дополнительно тепловой пункт может оснащаться блоком отопительной системы, прибором учета и другими необходимыми блоками и узлами.

Итп для отопления и ГВС

В данном случае работа индивидуального теплового пункта (ИТП) организована по независимой схеме.

Для отопительной системы предусмотрен теплообменник пластинчатый, который рассчитан на 100%-ную нагрузку.

Схема горячего водоснабжения – независимая, двухступенчатая, с двумя теплообменниками пластинчатого типа. С целью компенсации снижения уровня давления предусмотрена установка группы насосов.

Подпитка отопительной системы происходит с помощью соответствующего насосного оборудования из обратного трубопровода тепловых сетей. Подпитка горячего водоснабжения выполняется от системы холодного водоснабжения.

Кроме того, ИТП (индивидуальный тепловой пункт) укомплектован прибором учета.

Итп для отопления, горячего водоснабжения и вентиляции

Подключение тепловой установки выполняется по независимой схеме. Для отопительной и вентиляционной системы используется теплообменник пластинчатый, рассчитанный на 100%-ную нагрузку.

Схема горячего водоснабжения – независимая, параллельная, одноступенчатая, с двумя пластинчатыми теплообменниками, рассчитанными на 50% нагрузки каждый.

Компенсация понижения уровня давления осуществляется посредством группы насосов.

Подпитка отопительной системы происходит из обратного трубопровода тепловых сетей. Подпитка горячего водоснабжения выполняется из системы холодного водоснабжения.

Дополнительно индивидуальный тепловой пункт в многоквартирном доме может оборудоваться прибором учета.

Принцип работы

Схема теплового пункта напрямую зависит от особенностей источника, снабжающего энергией ИТП, а также от особенностей обслуживаемых им потребителей. Наиболее распространенной для данной тепловой установки является закрытая система горячего водоснабжения с подключением отопительной системы по независимой схеме.

Индивидуальный тепловой пункт принцип работы имеет такой:

  • По подающему трубопроводу теплоноситель поступает в ИТП, отдает тепло подогревателям системы отопления и горячего водоснабжения, а также поступает в вентиляционную систему.
  • Затем теплоноситель направляется в обратный трубопровод и по магистральной сети поступает обратно для повторного использования на теплогенерирующее предприятие.
  • Некоторый объем теплоносителя может расходоваться потребителями. Для восполнения потерь на источнике тепла в ТЭЦ и котельных предусмотрены системы подпитки, которые в качестве источника тепла используют системы водоподготовки данных предприятий.
  • Поступающая в тепловую установку водопроводная вода протекает через насосное оборудование системы холодного водоснабжения. Затем некоторый ее объем доставляется потребителям, другой нагревается в подогревателе горячего водоснабжения первой ступени, после этого направляется в циркуляционный контур горячего водоснабжения.
  • Вода в циркуляционном контуре посредством циркуляционного насосного оборудования для горячего водоснабжения передвигается по кругу от теплового пункта к потребителям и обратно. При этом по мере необходимости потребители отбирают из контура воду.
  • В процессе циркуляции жидкости по контуру она постепенно отдает собственное тепло. Для поддержания на оптимальном уровне температуры теплоносителя его регулярно нагревают во второй ступени подогревателя горячего водоснабжения.
  • Отопительная система также является замкнутым контуром, по которому происходит движение теплоносителя с помощью циркуляционных насосов от теплового пункта к потребителям и обратно.
  • В процессе эксплуатации могут возникать утечки теплоносителя из контура отопительной системы. Восполнением потерь занимается система подпитки ИТП, которая использует первичные тепловые сети в качестве источника тепла.

Допуск в эксплуатацию

Чтобы подготовить индивидуальный тепловой пункт в доме к допуску в эксплуатацию, необходимо представить в Энергонадзор следующий перечень документов:

  • Действующие технические условия на подключение и справку об их выполнении от энергоснабжающей организации.
  • Проектную документацию со всеми необходимыми согласованиями.
  • Акт ответственности сторон за эксплуатацию и разделение балансовой принадлежности, составленный потребителем и представителями энергоснабжающей организации.
  • Акт о готовности к постоянной или временной эксплуатации абонентского ответвления теплового пункта.
  • Паспорт ИТП с краткой характеристикой систем теплоснабжения.
  • Справку о готовности работы прибора учета тепловой энергии.
  • Справку о заключении договора с энергоснабжающей организацией на теплоснабжение.
  • Акт о приемке выполненных работ (с указанием номера лицензии и даты ее выдачи) между потребителем и монтажной организацией.
  • Приказ о назначении ответственного лица за безопасную эксплуатацию и исправное состояние тепловых установок и тепловых сетей.
  • Список оперативных и оперативно-ремонтных ответственных лиц по обслуживанию тепловых сетей и тепловых установок.
  • Копию свидетельства сварщика.
  • Сертификаты на используемые электроды и трубопроводы.
  • Акты на скрытые работы, исполнительную схему теплового пункта с указанием нумерации арматуры, а также схемы трубопроводов и запорной арматуры.
  • Акт на промывку и опрессовку систем (тепловые сети, отопительная система и система горячего водоснабжения).
  • Должностные инструкции, инструкции по пожарной безопасности и технике безопасности.
  • Инструкции по эксплуатации.
  • Акт допуска в эксплуатацию сетей и установок.
  • Журнал учета КИПа, выдачи нарядов-допусков, оперативный, учета выявленных при осмотре установок и сетей дефектов, проверки знаний, а также инструктажей.
  • Наряд из тепловых сетей на подключение.

Меры безопасности и эксплуатация

У обслуживающего тепловой пункт персонала должна быть соответствующая квалификация, также ответственных лиц следует ознакомить с правилами эксплуатации, которые оговорены в технической документации. Это обязательный принцип индивидуального теплового пункта, допущенного к эксплуатации.

Запрещено запускать в работу насосное оборудование при перекрытой запорной арматуре на вводе и при отсутствии в системе воды.

В процессе эксплуатации необходимо:

  • Контролировать показатели давления на манометрах, установленных на подающем и обратном трубопроводе.
  • Наблюдать за отсутствием постороннего шума, а также не допускать повышенной вибрации.
  • Осуществлять контроль нагрева электрического двигателя.

Не допускается применять чрезмерное усилие в случае ручного управления клапаном, а также при наличии давления в системе нельзя разбирать регуляторы.

Перед запуском теплового пункта необходимо промыть систему теплопотребления и трубопроводы.

Источник: https://FB.ru/article/204804/teplovoy-punkt-individualnyiy-itp-shema-printsip-rabotyi-ekspluatatsiya

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.